博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
《DirectX 9.0 3D游戏开发编程基础》必备的数学知识 读书笔记
阅读量:5992 次
发布时间:2019-06-20

本文共 2600 字,大约阅读时间需要 8 分钟。

最近在看游戏导航源码,但是看了几天感觉看不懂。里面全是一些几何运算,以及一些关于3d方面的知识。发现自己缺少3d这方面的知识,正好也想研究一下3d游戏开发的基本原理,于是决定买本书看看了,后来在opengl和directx要选择一个,感觉directX是微软的,就选了directx。

必备的数学知识

3D空间中的向量

几何学中一个有向线段表示,向量两个重要属性:长度、方向

向量不含有位置信息,如果向量的长度和方向相等即相等  。

左手直角坐标系和右手直角坐标系:左手直角坐标系z轴正方向穿进纸面,右手直角坐标系中z轴正方向穿出纸面。

向量处于标准位置:当某一向量起始端与坐标原点重合时。这样我们可以用向量的终点坐标来描述一个处于标准位置的向量。用于描述向量的坐标称为分量(component)

注意:由于标准位置中的向量都是用终点来表示的,因此点和向量很容易混淆。所以再次重申:点只是描述位置而向量描述了长度和方向

向量的表示:u=(ux,uy),N=(Nx,Ny,Nz) 通常用小写(有时也用大写)粗体字母来表示

四个特殊的3d向量:

  1. 零向量:其所有分量都为0用粗体0来表示 0 = (0,0,0)
  2. 其余三个向量称为R3的标准向量。这些向量分别为i,j,k方向,方向分别与x,y,z轴一致,且长度均为1:i=(1,0,0),j=(0,1,0),k=(0,0,1)

在D3DX库中,我们用类D3DXVECTOR3表示3d空间的向量。

向量相等

如果向量和长度方面相等,那么相等。

D3DXVECTOR u(1.0f,0.0f,1.0f);

D3DXVECTOR v(0.0f,1.0f,1.0f);

if(u == v) return true

向量计算长度

FLOATD3DXVec3Length(CONST D3DXVECTOR3 * pV);

向量的规范化

向量的规范化就是使向量的模变为1.即变为单位向量。可以通过将向量的每个分量都除向量的模来实现 。

D3DXVECTOR3 * D3DXVec3Normalize(D3DXVECTOR3 * pOut)

向量的相加

几何学上的向量相加

D3DXVECTOR3 u(2.0f, 0.0f, 1.0f);
D3DXVECTOR3 v(0.0f, -1.0f, 5.0f); // (2.0 + 0.0, 0.0 + (-1.0), 1.0 + 5.0)
D3DXVECTOR3 sum = u + v; // = (2.0f, -1.0f, 6.0f)

向量减法:

D3DXVECTOR3 u(2.0f, 0.0f, 1.0f);
D3DXVECTOR3 v(0.0f, -1.0f, 5.0f);
D3DXVECTOR3 difference = u - v; // = (2.0f, 1.0f, -4.0f)

数乘(标量与向量的乘积)

标量可以与向量相乘,顾名思义,该运算可对向量进行缩放。该运算不改变向量的方向,除非该向量与负数相乘,这是向量的方向与原来的方面相反 。

D3DXVECTOR3 u(1.0f, 1.0f, -1.0f);

D3DXVECTOR3 scaledVec = u * 10.0f; // = (10.0f, 10.0f, -10.0f)

点积(两个向量的乘积)

如果u和v都是单位向量则v*u就等于u,v夹角的余弦。

下面是点积的一些有用的性质:

  1. 若u*v=0 则u⊥v
  2. 若u*v>0 则两向量之间的夹角小于90度
  3. 若u*v<0 则两向量之间的夹角大于90度

FLOAT D3DXVec3Dot( // Returns the result.

CONST D3DXVECTOR3* pV1, // Left sided operand.
CONST D3DXVECTOR3* pV2 // Right sided operand.
);

叉积

与点积不同的是,叉积的结果是另一个向量。如果取向量 u和v的差积,运算所得的向量p与v、u彼此正交,也就是p与u正交,也行v正交。

矩阵

一个m*n的矩阵是一个m行,n列的矩形数组。行数和列数指定了矩阵的维数。我们用双下标来标识矩阵元素,其中第一个下标为元素所在行的索引,第二个下标不元素成在列的索引。

有时一个矩阵仅包含单行或单列。这样的矩阵称为行向量或列向量,下面是一人行向量和列向量的例子。

矩阵相等、数乘、加法

  • 相等:维数相同、对应元素相同。
  • 数乘:一个标量与矩阵每一个元素相乘
  • 相加:只有两个矩阵维数相同时,方可进行。加法就是对应元素相加所得的矩阵。
  • 减法:与加法相似

矩阵乘法

前提条件:A的列数等于B的行数,故乘积AB是有意义的。请注意,如果交换相乘的次序为BA 便无意义,因为B的列数和 A的行数不相等

由此说明:一般情况下矩阵乘法不满足乘法交换律(也就是, AB≠BA)

定义:若A为m*n的矩阵,B为n*p的矩阵,则乘积AB有意义,且等于一个m*p矩阵C,其中乘积C的第ij个元素的值等于A的第i个行向量与B的第j个列向量的点积。

单位矩阵:

有一种特殊的矩阵为单位矩阵,单位矩阵的特点是除主对角线上的元素为1外,其余元素均为0,而且是方阵。

单位矩阵可以作为一个乘法单位:MI=IM=M

即:用一个单位矩阵与某个矩阵相乘,不改变该矩阵。而且,某一矩阵与单位矩阵相乘,

逆矩阵:

逆矩阵的重要信息

  1. 只有方阵才能有逆矩阵,所以,当我们提到逆矩阵时,我们假定所关心的对象为方阵
  2. 一个m*n矩阵M的逆矩阵也是一个n*m矩阵,用符号M^-1表示。
  3. 并非所有方阵都有逆矩阵
  4. 一个矩阵与其逆矩阵的乘积为单位阵。

一个性质:(AB)^-1 = B^-1 A^-1

矩阵的转置

通过交换矩阵行和列来实现M的矩阵用M^T表示

D3DX矩阵 

编写D3Dx应用程序时,我们通常只使用4*4的矩阵和1*4的行向量。注意这两种维数的矩阵,意味着如下矩阵乘法是有意义的。

  1. 向量矩阵乘法
  2. 矩阵矩阵乘法

基本变换

在Direct3D编程时,我们使用4*4的矩阵表示一个变换。其思路如下:

  1. 设置一个4*4矩阵中元素的值
  2. 然后我们将某一点的坐标或某一向量的分量放入一个1*4的行向量v中
  3. 乘积vX就生成了一个新的经过变化的向量v’

平移矩阵

旋转矩阵

比例变换矩阵

几何变换的组合

转载地址:http://swxlx.baihongyu.com/

你可能感兴趣的文章
Draw Circle 沿着圆运动~~
查看>>
java出现no XXX in java.library.path的解决办法及eclipse配置
查看>>
开发者进阶之路 |UIBPlayer (视频播放)demo分享
查看>>
从今天开始,学习Webpack,减少对脚手架的依赖(下)
查看>>
node学习篇02-模块机制
查看>>
RPA女子计划—面向日本女性的工作方式改革
查看>>
Python3实现邮箱发送
查看>>
企业内部的API
查看>>
边缘提取,大津算法
查看>>
bzoj 2748: [HAOI2012]音量调节
查看>>
ArtTmeplate模板+取结接口
查看>>
mysql的status状态说明
查看>>
C# 全选中数字文本框内容
查看>>
onclick事件没有反应的五种可能情况
查看>>
提高mysql千万级大数据SQL查询优化30条经验(Mysql索引优化注意)
查看>>
php设计模式中的类型安全 指--只接受特定的对象 ---以避免发生错误
查看>>
为什么对象字面量没有名字?
查看>>
洛谷P4550 收集邮票(概率期望)
查看>>
快速开始
查看>>
项目持续集成工具
查看>>